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Potential Formalisms in Electromagnetic-Field
Analysis

Natalia K. Georgieva, Member, IEEE, and Helen W. Tam

Abstract—The theory of electromagnetic (EM) potentials is as
old as the Maxwell equations, which treat the field vectors E and
H directly. Yet the vector and scalar potentials are often regarded
as nothing more than an auxiliary mathematical concept, which
does not necessarily reflect a physically existing phenomenon. This
widely accepted opinion does not have sound theoretical or exper-
imental validation. The EM potentials are as “real” as the field
vectors—they describe observable phenomena and play a crucial
role in the explanation of light-matter interactions, radiation, and
propagation. We discuss the methodological value of the poten-
tial formalism in electromagnetism and the advantages of the po-
tential-based computational approaches in EM analysis. The key
points of the discussion are supported by examples of the anal-
ysis of classical problems such as the radiation from a small dipole
and the field propagation in waveguide structures: a waveguide
bend and an -plane filter. These examples include animations of
the propagation of the EM-field potentials and the respective field
vectors.

Index Terms—Electromagnetic (EM) potentials, EM theory, EM
transient analysis.

I. MOTIVATION AND OUTLINE

E LECTROMAGNETISM is a major branch of physics that
describes one of the four known fundamental interactions

in nature. It permeates a vast variety of both theoretical and
applied sciences. Its applications in electrical, electronic, and
telecommunications technology are profound and of utmost im-
portance to the modern world. In engineering science, subjects
such as engineering electromagnetics, microwave theory and
circuits, and antenna theory and design rest entirely on its funda-
mental laws. The technology these subjects describe represents
a remarkable success in harnessing electromagnetic (EM) en-
ergy. It is then somewhat puzzling that we are still far from a
complete and contradiction-free understanding of the EM phe-
nomena on both macroscopic and quantum level. Moreover,
there are two distinct theoretical models in electromagnetism:
the description in terms of field vectors and in terms of potential
functions. Although these two formalisms are in agreement—at
least in the case of macroscopic electromagnetism—there are
cases where the applicability of one or the other is severely
limited or completely fails. It is, therefore, important to be ac-
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quainted reasonably well with both approaches and to be aware
of their limitations.

Unfortunately, contemporary EM-based engineering courses
provide limited treatment of the topic of EM potentials—often
a result of impossible time restrictions. This treatment relates
mostly to antenna/scattering problems in isotropic homoge-
neous media, e.g., [1] and [2].1 A generalization of the potential
formalism to bi-isotropic homogeneous media is given in
[3]. In addition, a deeply rooted opinion permeates texts, as
well as research papers, which regards the vector potentials
as “strictly mathematical tools” [2], “auxiliary functions” [4],
“mainly an aid for computing electromagnetic fields” [5], [6],
etc. This opinion is hardly justifiable and it diminishes the
real significance of the EM potentials. More importantly, it is
in contradiction with quantum electrodynamics, which is an
inseparable part of electromagnetism.

Here, we discuss aspects of the theory and the applications
of the EM vector and scalar potentials. As a motivation to
educators in the field, we would like to point out some merits of
the methodology offered by the potential approach to EM-field
analysis. First, the EM potentials describe the EM field in
its entirety—there is no split into magnetic- and electric-field
vectors. Second, the potential approach rests on the wave equa-
tion, which is widely employed to describe other wave-like
phenomena such as those in acoustics or hydrodynamics. Con-
cepts such as polarization, radiation, diffraction, or scattering
can be perceived more intuitively through the potentials as they
allow analogies with mechanical waves, which are far more
tangible to the novice in the field. Third, the relation between
the vector potentials and the current sources is straightforward.
This is especially helpful in the case of homogeneous media
where the orientation of the vector potential is the same as
that of the respective current. Fourth, the vector potentials
produce the most natural description of the field in terms of
TE and TM modes with respect to a chosen axis, e.g., . As it
is well known, a single-component magnetic vector potential

is sufficient to describe a mode, the same being
true for a single-component electric vector potential
and a mode [1].2 Such modal decompositions are widely
used in microwave engineering. Also, last but not least, for
those who are involved in numerical EM analysis, the com-
putational approaches based on the potential formalism can
offer superior accuracy and numerical efficiency for a wide
class of problems in comparison with field-based techniques.

1Here, we limit the discussion to high-frequency electromagnetics and do not
refer to vector and scalar potentials in electrostatic and magnetostatic problems.

2Throughout the paper, vectors are in bold and unit vectors are denoted
by a .
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Below, we briefly review the origins and classical formulation
of the potential theory of the EM field. We point out its lim-
itations and proceed with a more general potential formalism,
which describes lossy nonhomogeneous media.3 We discuss the
relation between EM potentials and the field vectors, the prop-
erties of the vector potentials at material interfaces and sources,
as well as their boundary conditions. We then describe the con-
struction of solutions in terms of collinear potentials, their lim-
itations, and advantages. Throughout this paper, the analysis is
carried out in the time domain and is supported by numerous
examples and animations of the vector potentials and corre-
sponding field vectors.

II. CLASSICAL POTENTIAL FORMALISM

EM-field representations in terms of vector and scalar poten-
tials emerged together with the representation in terms of the
field vectors , , , and in what is now known as Maxwell
equations. Indeed, Maxwell himself considered the electroki-
netic momentum a fundamental field vector [7].4 Pointing
out that it relates to the electric current density in a way sim-
ilar to the way the scalar potential relates to the charge den-
sity, he also refers to it as “the vector-potential of the electric
current,” which is a vector quantity since the current itself is a
vector. Today, only a few are aware that in Chapter IX, “General
Equations of the Electromagnetic Field” [7], Maxwell defines
the magnetic induction and the electromotive intensity as
the derivatives of the vector potential and scalar potential
as follows:

(1)

(2)

where represents the velocity of the observation point in the
reference coordinate system of the sources and is the first-
order derivative with respect to time.5 Equation (2) is the well-
known Lorentz force equation.

Furthermore, Maxwell introduces the equations, which define
the sources of the EM field. The equation

(3)

shows the source of the magnetic force and, hence, of ,
followed by

(4)

which shows the electric charge density as the source of the
electric displacement and, hence, of . In (3), is the total
electric current density, which includes the conduction current
density ( being the electric conductivity), the

3The terms homogeneous and nonhomogeneous are used interchangeably
with the terms uniform and nonuniform, respectively, when describing the
properties of the medium.

4To avoid confusion, only standard symbols for all EM quantities are used
instead of the symbols used in [7].

5To make notations concise, partial derivatives are denoted by a @ . The order
of the derivative becomes apparent from the number of variables involved in the
differentiation. These variables appear as subscripts.

displacement current density , and the impressed
(external) current density . The equation

(5)

is not even included in the “general equations,” as it is an ob-
vious special case of (2) when is parallel to . Maxwell de-
rives expressions for the vector and scalar potentials in terms of
their respective sources, the current, and charge densities, in the
form of volume integrals [7] and in the form of second-order
wave equations [8]. They are valid in a dispersion-free uniform
medium, and are now common knowledge.

Since Maxwell, the science of classical electromagnetism
has grown immensely. Most notably, the theory has been devel-
oped toward the EM-field analysis in complex and composite
media where dispersion, nonuniformity, nonlinearity, and
anisotropy/bi-anisotropy are taken into account. What is now
known as the Maxwell “curl” equations

(6)

has become the preferred formalism in comparison with the po-
tential EM-field description in [7]. In (6), , where

is the specific magnetic conductivity; and denotes im-
pressed magnetic current density.6 These additional current den-
sities render the equations in (6) symmetrical and invariant with
respect to dual transformations.7 The Maxwell “divergence”
equations

(7)

are now viewed as implied by (6). This is indeed true if the EM
sources satisfy the fundamental law of continuity

(8)

where denotes the magnetic charge density.8 The equations
in (6) are not sufficient to provide a solution for the four field
vectors , , , and . They are complemented by the consti-
tutive relations [11]

(9)

(10)

6The magnetic current density is considered a fictitious vector quantity. It is
useful in applications based on the equivalence theorem [1]. The specific mag-
netic conductivity � is an important parameter of fictitious absorbing media
known in computational electromagnetics as perfectly matched layers [9].

7The concept of duality in electromagnetism is well explained and summa-
rized in [1] and [2].

8The magnetic charge density � is another “unusual” magnetic source,
which is considered fictitious since there is no experimental evidence for the
existence of magnetic monopoles. It is worth noting, however, that there are
strong theoretical arguments [10]–[12] in support of their existence.
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where the operators , , , and may, in general, be non-
linear operators. For example, for a dispersion-free isotropic and
linear, but nonhomogeneous medium, (9) and (10) reduce to

(11)

(12)

where is the dielectric permittivity and is the magnetic per-
meability. Notice that while the field vectors are functions of
position and time , the constitutive parameters are functions
of position only. Such constitutive relations imply instantaneous
response of the medium and are thus an approximation of its in-
teraction with the EM field. It is worth noting that, for a medium
to be causal (i.e., it responds after it is stimulated), the time-de-
pendent constitutive relations and must appear as
convolution-type integrals of time [13], [14]. The relations (11)
and (12) are acceptable when the medium is nearly dispersion
free in a broad frequency band.

The alternative field theory based on potential formulations
has seen significant developments as well. In quantum physics,
the potentials and are regarded as the “real” field rather
than the field vectors and (or , ). This is mostly
due to the fact that the EM potentials describe properly the
interaction between the EM field and charged particles in
quantum electrodynamics [15], [16]. The most well-known
experimental justification of these concepts is given by the
famous Aharonov-Bohm effect [17]. It demonstrates interaction
between an electron beam and the EM field in space where the
field vectors are zero, but the magnetic vector potential is not.
An exceptionally clear description of this experiment and the
physical meaning of the EM potentials can be found in [18].
The physical meaning and the “measurability” of and
are also examined in [19], [20] where the discussion is based
on general physical principles such as the equation of motion
and the Lagrangian description of an EM system, and does
not require specific knowledge of quantum electrodynamics.
Alternative ways to describe the EM power flow and energy in
terms of and are considered in [21]–[23].

On the other hand, high-frequency computational electro-
magnetics is dominated by the field analysis based on (6), (9),
and (10) or on the respective second-order vector wave equation
for or . This is largely due to the limited applicability of
the classical potential formalism based on to general
problems involving various types of materials and sources.
Some examples of the limitations of the classical potential
formalism are as follows.

1) It does not allow magnetic sources since (1) implies
and, therefore, . In that sense, it is incomplete

and inconsistent with EM duality unless complemented
by dual quantities: the electric vector potential and the
magnetic scalar potential .

2) In the time domain, it cannot handle nonuniform media
exhibiting magnetic losses. This becomes obvious by
taking the divergence of the second equation in (6). If
the relation (1) is true, then from (6), it follows that

is constant in space, i.e., . This is
a significant restriction on the generality of the formalism
although it involves a fictitious parameter such as .

3) It does not accommodate dispersive constitutive relations
in the time-domain analysis.

In brief, the potential formalism based on has been
applied to a limited class of high-frequency problems mostly
concerning EM-field propagation in vacuum, e.g., antenna
and scattering problems. The development of a general po-
tential formalism that can accommodate the vast variety of
field–matter interactions remains a challenge both in the
frequency- and time-domain analyses.

III. POTENTIALS AND FIELDS

It would be impossible to present here the immense amount
of work related to EM potentials. We would rather highlight
and illustrate only a few topics from the general vector poten-
tial formalism, which serve as a starting point toward more
advanced developments such as the scalar potential techniques
in electromagnetism [24]–[26].9 The choice of these topics
and the way they are presented inevitably reflects a personal
viewpoint, and no claim is made with regard to thoroughness
and completeness. The intention of this tutorial is to follow a
pragmatic and illustrative presentation, which could hopefully
clarify the physics behind the potential representation of the
EM field. The emphasis is on concepts that could be useful in
EM computations and education. We carry out the analysis in
the time domain assuming a dispersion-free medium in order
to make the discussion more transparent and compatible with
the illustrative EM-field animations.

The principle of radiation states that the acceleration (or
deceleration) of charges generates a wave-like EM disturbance
in space–time [27]. The acceleration of charges is equivalent
to time-varying current distributions. We assume the existence
of both magnetic and electric current densities and ,
which generate their respective vector potentials and .
In a homogeneous isotropic lossy dielectric-magnetic medium,

and satisfy the equations (written in the time-dependent
d’Alambert form) [28]

(13)

Here, the second-order differential operator in time is de-
rived from the first-order operators

(14)

as

(15)

9The scalar potential techniques study the possibility of EM-field repre-
sentations in terms of two scalar functions instead of the six-component
field-based vectorial formalism. They originated some hundred years ago
when Whittaker (1904) [26] proved that only two scalar functions are
sufficient to describe the EM field due to any (moving) charge distributions
in vacuum.
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Fig. 1. Computational volume of the dipole radiating in open space.

The operator defaults to the well-known wave operator
in a loss-free medium. Notice that and relate

to the “ordinary” vector potentials as

(16)

As a first example, let us consider the EM field in vacuum
of a very small dipole (electric current element) whose density
we set as in the –0– -plane. According to the first
equation in (13), a spherical wave is generated in
open space. We examine this wave when the current source is a
sinusoidal function of time.

We simulate numerically this problem using a finite-dif-
ference algorithm based on the time-domain wave-potential
(TDWP) approach [28], which solves the equations in (13) for
specified boundary conditions and medium. The computational
volume (see Fig. 1) includes only one octant of space because
of the symmetry of the problem. There is an electric wall at

and magnetic walls at and . The remaining
three boundaries employ absorbing boundary conditions to
simulate reflection-free propagation. The algorithm computes
normalized potentials and , both
measured in . Here, is the intrinsic
impedance of vacuum.

In the -oriented dipole example, a single-component nor-
malized potential is computed and a cross section of
the wave in the –0– -plane is animated in Animation 1.1.10 In
all examples considered in this paper, the computational space
is discretized into a uniform mesh. For the current example, we
choose a spatial step size , where is the wavelength
in free space corresponding to the frequency of the excitation
current ( m). The - and -axes in the animation are scaled
in terms of the spatial step . For example, the point
has actual coordinates , with respect to the
source point. In terms of wavelengths, these coordinates trans-
late into , . We should perhaps also mention that
our “small” current source is as small as the mesh allows it to
be, i.e., the current element is .

In the animation, the spherical symmetry of the wave is
well observed. One can also see the decay of the potential
magnitude as the wave moves away from the source. Since the
source has small, but finite dimensions, as discussed above, the
value of at the source location swings between large,
but finite values.

10All animations hereafter are obtained with in-house software based on the
TDWP algorithm [28] unless stated otherwise.

The field components can be computed from the vector
potentials if necessary. In this example, we use the relation

(17)

to compute the field component (see Animation 1.2). The
wave moving away from the dipole has the same wavelength

as the potential wave, of course; however, the slope of the en-
velope is steeper, i.e., the magnitude of the wave decays more
rapidly. This is due to the fact that the vector is obtained as
a spatial derivative of . Generally, the vector potentials are
smoother functions in the vicinity of sources and at discontinu-
ities compared to the field vectors. For a short dipole, the am-
plitude of a potential depends on the distance from the source
as , while the terms of the field vectors are proportional to

, where [27].
One can also compute the electric field vector using

(18)

The -field time-dependent distribution in the –0– -plane is
shown in Animation 1.3. is the most significant electric field
component far from the source. It is well seen that the far-zone
field of the dipole has maximum strength in the –0– -plane
(azimuthal) and is zero along the dipole’s axis, which coincides
with the -axis.

An advantage of the modified vector potentials and
is that their sources are exactly the electric and magnetic cur-
rent densities, respectively; unlike the source terms in the wave
equations for the field vectors, which appear as the derivatives
of the actual current densities. Thus, in a homogeneous medium,
the orientation of and is the same as the orientation of
the currents generating them.

When the EM wave propagates in a nonuniform medium, the
equations in (13) acquire additional terms [28], [29]11

(19)

where the scalar potentials and relate to and via the
generalized Lorenz gauge

(20)

The vector operators and are the gradients of the
operators defined in (14) as follows:

(21)

so that, e.g.,

(22)

The validity of (19) and (20) is not immediately obvious;
therefore, it is worthwhile showing that the Maxwell equations

11The frequency-domain vector potential analysis of nonhomogeneous media
is considered in [30].
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follow from them in a rather straightforward manner. Using
standard vector identities, (19) can be rewritten as

(23)

The above equations are, in fact, the Maxwell equations

(24)

provided that the field vectors are defined according to

(25)

An alternative potential-to-field relation can be derived by the
substitution of (25) into (24) as follows:

(26)

Once the vector potentials are known, the field vectors can be
computed via (25) or (26) if so desired. The information pro-
vided by the vector potentials is sufficient for most antenna pa-
rameters such as far-field patterns or antenna gain. When the
generalized -parameters [32] are needed, the incident power
has to be evaluated at the cross section of each port by inte-
grating over the Poynting vector . The respective
field components then have to be computed from the potentials
at the port locations.

The equations in (19) and (20) are the essence of a recently
developed vector potential formalism [28]–[30], which, unlike
previous vector potentials models, can handle nonhomogeneous
lossy dielectric-magnetic media in the frequency- and time-do-
main analyses. An attractive feature of this formalism is the
transparent relation between the modified vector potentials on
one hand and the EM sources on the other. The additional terms
due to the medium’s nonuniformity show in a straightforward
way how coupling occurs between the vector-potential compo-
nents. Since each vector potential component corresponds to an
EM-field mode, one can now estimate the coupling between
modes occurring at material interfaces and edges. This is im-
portant when estimating the accuracy of “reduced” computa-
tional approaches (e.g., [33] and [34]) applied to the analysis
of predominantly layered structures where additional modes are
excited (but neglected) at material interfaces orthogonal to the
major layers.

The additional terms in the right-hand side of (19) can be
viewed as sources generating additional disturbances, which
distort the field distribution from what it is in a uniform
medium. These sources are implicit in the sense that they
are due to the field’s interaction with the medium, unlike the
impressed sources, which are explicitly defined (independent
of the field) functions of space–time. Let us return to the
example of a small dipole. Here is how the inclusion of a

Fig. 2. Computational volume of the dipole buried in a dielectric layer.

layer of dielectric ( , ) orthogonal to leads to
a complicated pattern of the potential distribution in the
elevation plane (see Animation 2). The geometry setup is shown
in Fig. 2. The mesh size is the same as in the previous example.
The dielectric–air interface is at . The excitation
is now a Gaussian function of time in order to see better the
reflection from the dielectric interface and the formation of
a guided wave. The pulse duration is 9 ns. This problem can
still be analyzed in terms of a single potential because the
electric current density is parallel to , as is also the gradient of
the dielectric permittivity . Equations (19) suggest
that no other vector potential components are generated since
the implicit source has only a -component

(27)

The equations in (19) are modified for best performance with a
finite-difference discretization in nonuniform media [28]; how-
ever, the details of the implementation are outside of the scope of
this discussion. It is worth noting that all vector potential com-
ponents are continuous functions at locally flat material inter-
faces (even in the presence of surface current densities).12 This
is in contrast with the field vector components and is another
case in which the smoother distribution of the EM potentials in
space becomes obvious.

In microwave and millimeter-wave technology, closed
metallic boundaries and inclusions such as vias, strips,
waveguide septa and posts, etc., are often encountered. It is,
therefore, worthwhile to discuss the boundary conditions for
the vector potentials at least in the case of perfectly conducting
electric and magnetic walls. The derivation of the boundary
conditions for the vector potentials [35] is somewhat confusing
for anyone who attempts to solve problems involving, for
example, metallic objects. The boundary conditions are viewed
as the main reason why the vector potential concept is not
particularly popular in the high-frequency EM computational
community. One could argue that material interfaces introduce
nonuniqueness of the solution in terms of potentials although it
does not affect the field vectors [20]. The nonuniqueness of the
vector potential boundary conditions is best explained using
the transformations of source equivalence [29]. They show
that EM sources are subject to equivalent transformations that
preserve the field intact.

12By integrating the equations in (19) over a vanishingly thin interface region,
all boundary conditions for the vector potential components and their derivatives
along the interface unit normal can be obtained.
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(a) (b)

(c)

Fig. 3. Dipole above a ground plane: two possible boundary conditions.

Let us examine the simple example considered by Mayergoyz
[20] of a dipole above an infinite perfectly conducting metallic
plate [see Fig. 3(a)]. According to the equation for in (13),
only an potential is excited by the dipole. The vanishing
tangential electric-field components, expressed according to the
Lorenz gauge (20) and the relations in (25), dictate that

(28)

An obvious choice of the boundary condition for is

(29)

In fact, such a boundary condition sets the electric scalar
potential to zero since according to (20).
This corresponds to the equivalent problem defined through the
method of images [see Fig. 3(b)]. Thus, the problem is entirely
defined in terms of a single scalar, the magnetic vector potential
component , governed by the wave equation (13). The
space–time distribution of generated by an infinitesimal
dipole some distance away from a ground plane at can
be seen in Animation 3, where the current source is again a
Gaussian function of time. The potential distribution is
animated in the –0– (elevation) plane. The reflection from
the ground plane is well observed. Two distinct pulses are
formed—the original one and the reflected one—the reflected
one following closely behind the original pulse. The vanishing
first derivative of (29) causes the typical “plateau” shape
of the wave at the ground plane .

In reality, however, there is no field behind the electric wall
and thus should be set equal to zero in the conducting re-
gion 1 [see Fig. 3(c)]. Consequently, there are surface currents

induced at the perfect conductor’s
surface layer of infinitesimal thickness . According to (26), if
the tangential components vanish, is not zero and relates
to as

at (30)

Bearing in mind the relation between currents and vector po-
tentials, we conclude that these currents generate the and
components of a magnetic vector potential, and those should be
included in the computations accordingly. This approach is fea-
sible, and the same field will be obtained, this time, however,
at the expense of computing two additional scalar quantities at
each point of space–time. It can be shown that this is unneces-
sary because the tangential surface currents above are equivalent
to a planar distribution of normal to the ground electric current
density , which implies the boundary condition (29)
for the homogeneous13 wave equation of . According to the
theory of source equivalence [29], the field generated by the cur-
rent density defined in (30) is equivalent to the field generated
by

(31)

where

(32)

In (32), , and is the two-dimensional
(2-D) Laplace operator . From (30) and (32),
it follows that

at (33)

The functions and are identically zero everywhere else
since exists only at . If we now integrate the wave
equation for with the equivalent sources (31) at the vanish-
ingly thin surface layer

(34)

and let , we obtain

at (35)

since . The above relation shows that the equiva-
lent surface layer of -directed current density compensates the

derivative, which is nonzero because of the assumption
of vanishing in the conducting region. Thus, in effect, the
current distribution makes the solution equivalent to a ho-
mogeneous wave equation for with a homogeneous Neu-
mann boundary condition (29) at .

In general, the simplest—although not the only pos-
sible—boundary conditions for the vector potentials at electric
and magnetic walls can be obtained from (25) in a homoge-
neous Dirichlet or Neumann form by setting the respective
tangential field components equal to zero. Thus, at an electric
wall of unit normal , they appear as

(36)

13The term homogeneous here refers to the wave equation (not the medium)
and emphasizes that its source term is zero.
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Fig. 4. Geometry and dimensions of the H-plane waveguide filter.

The boundary conditions at magnetic walls are obtained by du-
ality. It can also be shown [28] that when a vector potential com-
ponent is parallel to an edge along , its boundary conditions
still appear in the above simple form; e.g., for a metallic edge

(37)

IV. SOLUTIONS IN TERMS OF PAIRS OF

COLLINEAR POTENTIALS

The above discussion on the treatment of material interfaces
in the vector potential formalism is essential in understanding
the modal behavior of the field and construction of an efficient
solution in terms of potential functions instead of the field
vectors. For example, in a stratified medium where the consti-
tutive parameters depend on a single coordinate along the axis

normal to the layers, the solution can be carried out in terms
of a single-component magnetic vector potential ,
as it was done in the second example of a dipole buried in
a dielectric layer. This analysis yields a solution in terms of
the mode.14 Note that the mode is analyzed in-
dependently of the mode (corresponding to
and excited by ) as both modes are decoupled
according to (19). Of course, the orientation of the vector
potential depends also on its impressed sources, which may
have components transversal to . However, such components
can be transformed into -directed electric and/or magnetic
current densities using the equivalent source transformations
[29]. This can be done offline (outside of the actual field
computation) as the impressed current densities are explicitly
defined functions of space–time.

In a similar manner, if all edges in the volume of interest
are of the same orientation, the most efficient analysis is in
terms of the vector potential which is: i) parallel to the edges
and ii) corresponds to the desired mode. Consider the -plane
waveguide filter in Fig. 4. There are -directed edges in this
structure which leaves us a choice between
and . If the structure is to be analyzed for the
dominant mode then the potential is the proper
choice ( for waveguide modes independent
of ). Animation 4.1 shows the propagation of a band-limited
(5–10 GHz) EM pulse in terms of the potential through
the filter. We simulate matched waveguide ports at both ends
of the filter using absorbing boundary conditions. The is
set to zero at the edges of the septa according to (37). This
makes the locations of the septa along the guide well visible

14Here, the term mode refers only to the orientation of the respective
vector potential and is in no way descriptive of the field distribution in
the plane transverse to n̂.

Fig. 5. Magnitudes of the S-parameters of the H-plane waveguide filter.

in the animation. The boundary conditions at the waveguide
walls are at and , and at

and . The discretization mesh is uniform with a
step size , where is the septum thickness (see Fig. 4).
As before, the axes are scaled in terms of . The reflection
coefficient and insertion loss of the filter are plotted in Fig. 5.
They are computed from the time-domain waveforms of the

potential recorded at the input and output waveguide ports.
For verification, the -parameters generated by a commercial
finite-element solver (Agilent HFSS15 ) are plotted as well.

In summary, in a region of the computational volume where:
1) the gradients of the constitutive parameters (if not zero) are
parallel to the direction specified by ; 2) the conducting edges
(if present) are along ; and 3) all sources have been trans-
formed into -oriented current densities, any field mode can be
described using one of the two potential components or

. The field representation is thus reduced (or scalarized) to
two decoupled modes, the and the mode, which can
be analyzed separately.16 Such regions are said to have a distin-
guished axis . An obvious special case is the open space where
any axis can be chosen as distinguished unless specified by the
orientation of a radiating source. The computational advantages
of using a potential approach to the analysis of such regions are
obvious. In a finite-difference implementation, solving a single
wave equation instead of the Maxwell equations leads to a three-
fold reduction in both CPU time and memory requirements.

To avoid any confusion with currently existing TE/TM de-
composition techniques in computational electromagnetics, it
is worthwhile discussing their applicability and the difference
from the potential approach. When the field does not depend
on one of the spatial coordinates, a 2-D field solver can per-
form the analysis with a reduced computational effort. In the
2-D case, the Maxwell equations decouple into two groups of
equations: a TE and TM field, where the TE/TM decomposi-
tion is with respect to the axis of field invariance [9], e.g., in
the case of the mode in the waveguide filter example.

15HFSS, ver. 5.5, Agilent Technologies, Santa Rosa, CA, 1999.
16The procedure is also referred to as TE/TM field decomposition [1], [2]. It

is widely used in the construction of Green’s functions for stratified media, as
well as the solution to waveguide and radiation problems.
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Fig. 6. Geometry of theE-plane waveguide bend. TheTE mode is excited
through the F potential component, but the reflected and transmitted waves
contain higher order modes.

Each of these modes requires the computation of three scalars.
For example, the mode of an -independent field involves
the , , and components. Due to the reduction of the
computational volume to a 2-D plane and the reduction of the
number of unknown scalars computed at each point from six to
three, the 2-D field-based computations are significantly faster
than their three-dimensional (3-D) full-wave counterparts. To il-
lustrate this technique, the dominant mode of the -plane wave-
guide filter is simulated again, this time with the 2-D solver
MEFiSTo-2D Classic17 which is based on the transmission-line
matrix (TLM) method. Either one of the three computed field
components, i.e., , or , can be observed. Animation 4.2
shows the EM wave in terms of the component. Notice that
in the case of the dominant mode, . Thus,

according to (25). The spatial distribution of
is, therefore, very similar to that of . This is well seen

from both animations Animation 4.1 and Animation 4.2.
It must be emphasized that the 2-D field-based analysis is

very different from the potential-based analysis. In the former,
the TE mode decouples from the TM mode due to the field in-
variance along one of the axis, thereby limiting its applicability
to 2-D problems. In the latter, the TE mode decouples from the
TM mode due to the specific properties of the regions of distin-
guished axis , thereby providing a full-wave solution in terms
of two decoupled modes, i.e., the mode described by
and the mode described by .

Take as an example, the -plane waveguide bend shown in
Fig. 6. This is a 3-D problem regardless of the mode we analyze
it for. It still can be solved in terms of a single-component vector
potential ( or ) as it contains only one edge along the

-axis. Mode equivalence [28] shows that the dominant
mode is represented by . The potential is
excited with a limited bandwidth from 5 to 10 GHz to suppress
higher order modes in the transient response. The EM wave is
shown in Animation 5 in terms of in the –0– -plane (the

-plane). The animation illustrates the normalized potential
, . The vertical electric-field component

corresponding to the dominant mode is calculated at each port
and is used to obtain the -parameters (see Fig. 7).

The incident field pulse is excited so that it is independent
of the vertical coordinate at the input waveguide section,
which corresponds to the dominant-mode field distribution.
However, the -plane bend introduces higher order modes

17MEFiSTo-2D Classic, Faustus Sci. Corporation, Victoria, BC, Canada [On-
line]. Available: http://www.faustcorp.com

Fig. 7. Magnitudes of the S-parameters of the E-plane waveguide bend.

in the reflected wave, which now depends on , as well as
in the transmitted wave, which now depends on . This is
well seen in Animation 5, where, initially, the incident wave
is independent of the -coordinate. After the reflection, the
total field is obviously dependent on , which indicates the
presence of higher order modes. The same effect is observable
in the transmitted wave as well. It is seen that it depends on

, especially in the region close to the bend. Depending on
the excited frequencies and the dimensions of the waveguide
cross section, the higher order “content” may be of propagating
and/or evanescent modes. In this particular example, the cross
section of the waveguide is such that higher order modes are
evanescent. They quickly decay as the observation point moves
away from the bend, i.e., the wave becomes less and less
dependent on the vertical coordinate (e.g., in the input guide).

V. CONCLUSION

We now have a clear understanding of the conditions that
allow the field representation in terms of two decoupled modes.
These are the conditions defining a region of distinguished axis

. They impose significant restrictions on the problems solvable
in terms of a single-component vector potential. It is, therefore,
important to answer the questions: 1) is it possible to generalize
the scalar potential representation to problems of practical
importance, e.g., involving arbitrarily oriented gradients of the
constitutive parameters and perfectly conducting edges and 2) at
what expense?18 The answer to the first question is positive.
The price one has to pay is that the two modes represented by
the scalar wave potentials and are coupled so that
they cannot be analyzed separately anymore. In computational
terms, it means that two second-order wave equations are solved
simultaneously. In a finite-difference algorithm, this amounts to
two-thirds of the computational requirements of a field-based
vectorial algorithm such as the finite-difference time-domain
(FDTD) method. The coupling can be accounted for by domain
subdivision of the computational volume and equivalent modal
transformations [28]. Other possibilities arise from the source
equivalence theory [29]. Potential-based solutions using finite-
differences exhibit excellent accuracy even with coarse grids,

18The discussion can be extended into the realm of anisotropic and
bi-anisotropic media, but this reaches far beyond the goals of this tutorial.
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which is due to their smooth distribution in the vicinity of
interfaces, edges, and sources.

The application of the scalar potential techniques to a variety
of problems arising in high-frequency electronics and in
photonics is an exciting and novel venue of research. Thus far,
the research on the EM potentials in electrodynamics has been
largely confined to theoretical developments and discussions.
The purpose of this tutorial would be achieved if it succeeds
in encouraging interest in the subject of EM potentials and
its development toward useful applications and computational
approaches.19

Finally, the theory of EM potentials provides a different
perspective into the physics of electromagnetism, a viewpoint
which reveals its similarity to other familiar wave phenomena
in the physical world. It certainly provides a better intuitive
understanding of radiation and wave propagation. Thus, if
properly presented, it offers an invaluable methodology for the
educators in the field.
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